十大经典排序算法


  

引言:

排序算法是《数据结构与算法》中最基本的算法之一。这里对十大经典的排序算法做一下解释说明。不知道的道友可以来这里扫下盲。转自“菜鸟教程”。

说明

  排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。用下图来概括:

“冒选插希归快堆、计数、基数、桶”

名词解释:

  • n:数据规模
  • k:”桶”的个数
  • In-place:占用常数内存,不占用额外内存
  • Out-place:占用额外内存
  • 稳定性:排序后 2 个相等键值的顺序和排序之前它们的顺序相同

平方阶 O(n2) 排序 各类简单排序:直接插入、直接选择和冒泡排序。
线性对数阶 O(nlog2n)) 排序: 快速排序、堆排序和归并排。
O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数: 希尔排序。
线性阶 O(n) 排序: 基数排序,此外还有桶、箱排序。
稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。
不稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。

一、冒泡排序

  冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢”浮”到数列的顶端。
  作为最简单的排序算法之一,冒泡排序给我的感觉就像 Abandon 在单词书里出现的感觉一样,每次都在第一页第一位,所以最熟悉。冒泡排序还有一种优化算法,就是立一个 flag,当在一趟序列遍历中元素没有发生交换,则证明该序列已经有序。但这种改进对于提升性能来说,并没有什么太大作用。

1、算法步骤

  • 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
  • 针对所有的元素重复以上的步骤,除了最后一个。
  • 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

2、动画演示

3、java代码示例

public int[] bubbleSort(int[] sourceArray) {
    int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

    for (int i = 1; i < arr.length; i++) {
        boolean flag = true;//标记。若为true,则表示此次循环没有进行交换
        for (int j = 0; j < arr.length - i; j++) {
            if (arr[j] > arr[j + 1]) {
                int tmp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = tmp;
                flag = false;
            }
        }
        if (flag) break;
    }
    return arr;
}

二、选择排序

  选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n2) 的时间复杂度。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。

1、算法步骤

  • 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
  • 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
  • 重复第二步,直到所有元素均排序完毕。

2、动画演示

3、java代码示例

public int[] selectionSort(int[] sourceArray) {
	int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

    // 总共要经过 N-1 轮比较
    for (int i = 0; i < arr.length - 1; i++) {
        int min = i;

        // 每轮需要比较的次数 N-i
        for (int j = i + 1; j < arr.length; j++) {
            if (arr[j] < arr[min]) {
                min = j; // 记录目前能找到的最小值元素的下标
            }
        }

        // 将找到的最小值和i位置所在的值进行交换
        if (i != min) {
            int tmp = arr[i];
            arr[i] = arr[min];
            arr[min] = tmp;
        }
    }
    return arr;
}

三、插入排序

  插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了。插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序和冒泡排序一样,也有一种优化算法,叫做拆半插入。

1、算法步骤

  • 将排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。
  • 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面,保持稳定性)

2、动画演示

3、java代码示例

public int[] insertSort(int[] sourceArray) {
	int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

    // 从下标为1的元素开始选择合适的位置插入,因为下标为0的只有一个元素,默认是有序的
    for (int i = 1; i < arr.length; i++) {
        int tmp = arr[i]; // 记录要插入的数据

        // 从已经排序的序列最右边的开始比较,找到比其小的数
        int j = i;
        while (j > 0 && tmp < arr[j - 1]) {
            arr[j] = arr[j - 1]; // 将第j-1个元素往后挪
            j--;
        }

        // 存在比其小的数,插入
        if (j != i) arr[j] = tmp;
    }
    return arr;
}

四、希尔排序

  希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。希尔排序是基于插入排序的以下两点性质而提出改进方法的:

  • 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率;
  • 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位;

希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录”基本有序”时,再对全体记录进行依次直接插入排序。

1、算法步骤

  • 选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
  • 按增量序列个数 k,对序列进行 k 趟排序;
  • 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

2、动画演示

3、java代码示例

public void shellSort(int[] arr){
	int length = arr.length;
    int temp;
    for (int step = length / 2; step >= 1; step /= 2) {//step相当于增量
        for (int i = step; i < length; i++) {
            temp = arr[i];
            int j = i - step;
            while (j >= 0 && arr[j] > temp) {
                arr[j + step] = arr[j];
                j -= step;
            }
            arr[j + step] = temp;
        }
    }
}

五、并归排序

  归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:

  • 自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法)
  • 自下而上的递归

  和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) 的时间复杂度。代价是需要额外的内存空间。

1、算法步骤

  • 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
  • 设定两个指针,最初位置分别为两个已经排序序列的起始位置;
  • 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
  • 重复步骤 3 直到某一指针达到序列尾;
  • 将另一序列剩下的所有元素直接复制到合并序列尾。

2、动画演示

3、java代码示例

public class MergeSort {
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        if (arr.length < 2) return arr;// 这还排个啥呀

        int middle = (int) Math.floor(arr.length / 2);
        int[] left = Arrays.copyOfRange(arr, 0, middle);
        int[] right = Arrays.copyOfRange(arr, middle, arr.length);

        return merge(sort(left), sort(right));
    }

    protected int[] merge(int[] left, int[] right) {
        int[] result = new int[left.length + right.length];
        int i = 0;
        while (left.length > 0 && right.length > 0) {
            if (left[0] <= right[0]) {
                result[i++] = left[0];
                left = Arrays.copyOfRange(left, 1, left.length);
            } else {
                result[i++] = right[0];
                right = Arrays.copyOfRange(right, 1, right.length);
            }
        }

        while (left.length > 0) {
            result[i++] = left[0];
            left = Arrays.copyOfRange(left, 1, left.length);
        }

        while (right.length > 0) {
            result[i++] = right[0];
            right = Arrays.copyOfRange(right, 1, right.length);
        }

        return result;
    }
}

六、快速排序

  在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。
  快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n²),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,可是这是为什么呢,我也不知道。

《算法艺术与信息学竞赛》:快速排序的最坏运行情况是 O(n²),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。

1、算法步骤

  • 从数列中挑出一个元素,称为 “基准”(pivot),通常选择第一个元素;
  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

2、动画演示

3、java代码示例1(左右挖坑互填)

//快速排序。左右挖坑互填
void quickSort(int[] s, int l, int r) {
    if (l < r) {
        int i = l, j = r;
        int x = s[l]; //默认选择第一个数位基准,也可以把其他的数交换到第一个数的位置上来作为基准
        while (i < j) {
            while (s[j] >= x && i < j) j--; // 从右向左找第一个小于x的数
            if (i < j) s[i++] = s[j];
            while (s[i] < x && i < j) i++;  // 从左向右找第一个大于等于x的数
            if(i<j) s[j--] = s[i];
        }
        s[i] = x;
        quickSort(s, l, i - 1); //递归调用
        quickSort(s, i + 1, r);
    }
}

4、java代码示例2(左右交换)

//快速排序。左右交换
void quickSort(int[] s, int l, int r) {
    if (l < r) {
        int i = l, j = r;
        int temp = s[i];
        while (i < j) {
            while (s[j] >= s[l] && i < j) j--;
            while (s[i] <= s[l] && i < j) i++;
            temp = s[i]; //交换i、j位置元素
            s[i] = s[j];
            s[j] = temp;
        }
        s[i] = s[l]; //交换i、l位置元素
        s[l] = temp;
        quickSort(s, l, i - 1); //递归调用
        quickSort(s, i + 1, r);
    }
}

5、java代码示例3(辅助函数)

public class QuickSort {
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
        return quickSort(arr, 0, arr.length - 1);
    }

    private int[] quickSort(int[] arr, int left, int right) {
        if (left < right) {
            int partitionIndex = partition(arr, left, right);
            quickSort(arr, left, partitionIndex - 1);
            quickSort(arr, partitionIndex + 1, right);
        }
        return arr;
    }

    private int partition(int[] arr, int left, int right) {
        int pivot = left;// 设定基准值(pivot)
        int index = pivot + 1;
        for (int i = index; i <= right; i++) {
            if (arr[i] < arr[pivot]) {
                swap(arr, i, index);
                index++;
            }
        }
        swap(arr, pivot, index - 1);
        return index - 1;
    }

    private void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
}

七、堆排序

  堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:

  • 大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;
  • 小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;

堆排序的平均时间复杂度为 Ο(nlogn)。

1、算法步骤

  • 创建一个堆 H[0……n-1];
  • 把堆首(最大值)和堆尾互换;
  • 把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置(可以理解为堆化);
  • 重复步骤 2,直到堆的尺寸为 1。

2、动画演示

3、java代码示例1(递归堆化)

public class HeapSort {
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        int len = arr.length;
        buildMaxHeap(arr, len);

        for (int i = len - 1; i > 0; i--) {
            swap(arr, 0, i);
            len--;
            heapify(arr, 0, len);
        }
        return arr;
    }

	//自底向上堆化
    private void buildMaxHeap(int[] arr, int len) {
        for (int i = (int) Math.floor(len / 2); i >= 0; i--) {
            heapify(arr, i, len);
        }
    }

	//其实就是保证父节点满足上面提到的堆积的性质
    private void heapify(int[] arr, int i, int len) {
        int left = 2 * i + 1;
        int right = 2 * i + 2;
        int largest = i;

        if (left < len && arr[left] > arr[largest]) largest = left;
        if (right < len && arr[right] > arr[largest]) largest = right;

        if (largest != i) {
            swap(arr, i, largest);
            heapify(arr, largest, len);
        }
    }

    private void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
}

java代码示例2(迭代堆化)

public int[] heapSort(int[] sourceArray) {
    // 对 arr 进行拷贝,不改变参数内容
    int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

    //建堆,自底向上堆化
    for (int i = 1; i < arr.length; i++) {
        int child = i;
        int root = (child - 1) / 2;//父节点
        while (arr[child] > arr[root]) {
            swap(arr, child, root);
            child = root;
            root = (child - 1) / 2;
        }
    }
    //首元素向后交换,自顶向下堆化
    for (int i = arr.length - 1; i > 0; i--) {
        swap(arr, 0, i);
        int root = 0;
        while (true) {
            int left = root * 2 + 1, right = root * 2 + 2;//原则上的左右孩子
            int maxChild = root;
            if (left < i && arr[left] > arr[maxChild]) maxChild = left;
            if (right < i && arr[right] > arr[maxChild]) maxChild = right;
            if (maxChild != root) {
                swap(arr, root, maxChild);
                root = maxChild;
            } else break;
        }
    }
    return arr;
}

private void swap(int[] arr, int i, int j) {
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}

八、计数排序

  计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。特征:当输入的元素是 n 个 0 到 k 之间的整数时,它的运行时间是 Θ(n + k)。计数排序不是比较排序,排序的速度快于任何比较排序算法。
  由于用来计数的数组C的长度取决于待排序数组中数据的范围(等于待排序数组的最大值与最小值的差加上1),这使得计数排序对于数据范围很大的数组,需要大量时间和内存。例如:计数排序是用来排序0到100之间的数字的最好的算法,但是它不适合按字母顺序排序人名。但是,计数排序可以用在基数排序中的算法来排序数据范围很大的数组。
  通俗地理解,例如有 10 个年龄不同的人,统计出有 8 个人的年龄比 A 小,那 A 的年龄就排在第 9 位,用这个方法可以得到其他每个人的位置,也就排好了序。当然,年龄有重复时需要特殊处理(保证稳定性),这就是为什么最后要反向填充目标数组,以及将每个数字的统计减去 1 的原因。

1、算法步骤

  • 找出待排序的数组中最大和最小的元素
  • 统计数组中每个值为i的元素出现的次数,存入数组C的第i项
  • 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)
  • 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1

2、动画演示

3、java代码示例

public int[] countingSort(int[]  sourceArray){
    // 对 arr 进行拷贝,不改变参数内容
    int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

    // 找最大最小值
    int min = arr[0], max = arr[0];
    for (int num : arr) {
        if (num < min) min = num;
        if (num > max) max = num;
    }

    // 计数
    int[] count = new int[max - min + 1];
    for (int num : arr) count[num - min]++;

    int sortedIndex = 0;
    for (int i = 0; i < count.length; i++) {
        while (count[i]-- > 0) {
            arr[sortedIndex++] = min + i;
        }
    }
    return arr;
}

九、桶排序

  桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。为了使桶排序更加高效,我们需要做到这两点:

  • 在额外空间充足的情况下,尽量增大桶的数量
  • 使用的映射函数能够将输入的 N 个数据均匀的分配到 K 个桶中

  同时,对于桶中元素的排序,选择何种比较排序算法对于性能的影响至关重要。什么时候最快:当输入的数据可以均匀的分配到每一个桶中。什么时候最慢:当输入的数据被分配到了同一个桶中。

1、动画演示

元素分布在桶中 元素在每个桶中排序

2、java代码示例

public int[] bucketSort(int[]  sourceArray, int bucketSize){
    // 对 arr 进行拷贝,不改变参数内容
    int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

    // 找最大最小值
    int min = arr[0], max = arr[0];
    for (int num : arr) {
        if (num < min) min = num;
        if (num > max) max = num;
    }

    int bucketCount = (int) Math.floor((max - min) / bucketSize) + 1;
    int[][] buckets = new int[bucketCount][0];

    // 利用映射函数将数据分配到各个桶中
    for (int i = 0; i < arr.length; i++) {
        int index = (int) Math.floor((arr[i] - min) / bucketSize);
        buckets[index] = arrAppend(buckets[index], arr[i]);
    }

    int arrIndex = 0;
    for (int[] bucket : buckets) {
        if (bucket.length <= 0) continue;
        bucket = insertSort(bucket);// 对每个桶进行排序,这里使用了插入排序
        for (int value : bucket) {
            arr[arrIndex++] = value;
        }
    }

    return arr;
}

// 自动扩容,并保存数据
private int[] arrAppend(int[] arr, int value){
    arr = Arrays.copyOf(arr, arr.length + 1);
    arr[arr.length - 1] = value;
    return arr;
}

// 插入排序
private int[] insertSort(int[] sourceArray){
    int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
    for (int i = 1; i < arr.length; i++) {
        int temp = arr[i]; //记录要插入的数据
        // 从已排序的序列最右边开始比较,找到比其小的数
        int j = i;
        while (j > 0 && arr[j - 1] > temp) {
            arr[j] = arr[j - 1];
            j--;
        }
        if (j != i) arr[j] = temp;
    }
    return arr;
}

十、基数排序

  基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。
基数排序 vs 计数排序 vs 桶排序:这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:

  • 基数排序:根据键值的每位数字来分配桶;
  • 计数排序:每个桶只存储单一键值;
  • 桶排序:每个桶存储一定范围的数值;

基数排序有两种方法:
  最高位优先(Most Significant Digit first)法,简称MSD法:先按k1排序分组,同一组中记录,关键码k1相等,再对各组按k2排序分成子组,之后,对后面的关键码继续这样的排序分组,直到按最次位关键码kd对各子组排序后。再将各组连接起来,便得到一个有序序列。
  最低位优先(Least Significant Digit first)法,简称LSD法:先从kd开始排序,再对kd-1进行排序,依次重复,直到对k1排序后便得到一个有序序列。
  LSD的基数排序适用于位数小的数列,如果位数多的话,使用MSD的效率会比较好。MSD的方式与LSD相反,是由高位数为基底开始进行分配,但在分配之后并不马上合并回一个数组中,而是在每个“桶子”中建立“子桶”,将每个桶子中的数值按照下一数位的值分配到“子桶”中。在进行完最低位数的分配后再合并回单一的数组中。

1、动画演示

LSD 基数排序动图演示

2、java代码示例

public class RadixSort {
    public int[] sort(int[] sourceArray) {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        int maxDigit = getMaxDigit(arr);
        return radixSort(arr, maxDigit);
    }

    // 获取最高位数
    private int getMaxDigit(int[] arr) {
        int maxValue = getMaxValue(arr);
        return getNumLenght(maxValue);
    }

    private int getMaxValue(int[] arr) {
        int maxValue = arr[0];
        for (int value : arr) {
            if (maxValue < value) maxValue = value;
        }
        return maxValue;
    }

    protected int getNumLenght(long num) {
        if (num == 0) return 1;
        int lenght = 0;
        for (long temp = num; temp != 0; temp /= 10) {
            lenght++;
        }
        return lenght;
    }

    private int[] radixSort(int[] arr, int maxDigit) {
        int mod = 10;
        int dev = 1;

        for (int i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
            // 考虑负数的情况,这里扩展一倍队列数,其中 [0-9]对应负数,[10-19]对应正数 (bucket + 10)
            int[][] counter = new int[mod * 2][0];

            for (int j = 0; j < arr.length; j++) {
                int bucket = ((arr[j] % mod) / dev) + mod;
                counter[bucket] = arrayAppend(counter[bucket], arr[j]);
            }

            int pos = 0;
            for (int[] bucket : counter) {
                for (int value : bucket) {
                    arr[pos++] = value;
                }
            }
        }

        return arr;
    }

    // 自动扩容,并保存数据
    private int[] arrayAppend(int[] arr, int value) {
        arr = Arrays.copyOf(arr, arr.length + 1);
        arr[arr.length - 1] = value;
        return arr;
    }
}

文章作者: YangChongZhi
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 YangChongZhi !
评论
 上一篇
LRU缓存和LFU缓存 LRU缓存和LFU缓存
   引言: 操作系统中的页面置换算法是很多缓存机制的基础,比较经典的就有LRU和LFU算法。当缓存数据的数量未达到容量大小时,能正常存入缓存的数据结构中;当缓存的数据容量达到了最大容量,而又有新的数据需要缓存时,就得考虑如何删除已存在的缓
2021-06-28
下一篇 
华为2021软件精英挑战赛复赛赛后方案分享 华为2021软件精英挑战赛复赛赛后方案分享
   引言: 我是来自成渝赛区UESTC的选手,成渝赛区初赛排名13名,复赛最终排名12,再一次成功拿到手环。成渝赛区总报名人数全国第二,电子科技大学单校报名人数全国第一,太卷了,太卷了。鄙人十分不幸,生在成渝赛区的电子科技大学,据说成渝赛
2021-04-20
  目录